

First-order differential equations

Classify and solve the following first-order differential equations:

1. $3x^2y^2 + 2x^3yy' = 0$

2. $y' + y = xy^3$

3. $dy/dx = \frac{e^x - y}{x}$

Solution

1. The given differential equation:

$$3x^2y^2 + 2x^3yy' = 0$$

is an **exact differential equation**. This is because it can be expressed in exact differential form, where there exists a function $F(x, y)$ such that:

$$\frac{\partial F}{\partial x} = M(x, y), \quad \frac{\partial F}{\partial y} = N(x, y)$$

and the differential equation can be written as:

$$M(x, y)dx + N(x, y)dy = 0$$

In our case, we can rewrite the equation as follows:

1. Multiply both sides by dx :

$$3x^2y^2 dx + 2x^3yy' dx = 0$$

2. Observing that $y' dx = dy$, we have:

$$3x^2y^2 dx + 2x^3y dy = 0$$

3. Reordering the terms:

$$(3x^2y^2) dx + (2x^3y) dy = 0$$

Now we identify:

$$M(x, y) = 3x^2y^2, \quad N(x, y) = 2x^3y$$

To verify if the equation is exact, we check if:

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

We compute the partial derivatives:

$$- \frac{\partial M}{\partial y} = \frac{\partial}{\partial y}(3x^2y^2) = 6x^2y$$

$$- \frac{\partial N}{\partial x} = \frac{\partial}{\partial x}(2x^3y) = 6x^2y$$

Integrating both functions:

$$\begin{aligned} \int (3x^2y^2) dx &= x^3y^2 + C_1 \\ \int (2x^3y) dy &= x^3y^2 + C_2 \end{aligned}$$

The final result:

$$x^3y^2 = C$$

2. This is a Bernoulli differential equation. We divide the expression by y^3 :

$$y'y^{-3} + y^{-2} = x$$

We set $z = y^{-2}$, then $z' = -2y^{-3}y'$, $z'/-2 = y^{-3}y'$, so the equation becomes:

$$\frac{-z'}{2} + z = x$$

$$z' + -2z = -2x$$

This is a linear equation. We propose the substitution $z = uv$, with $z' = u'v + v'u$:

$$\begin{aligned} u'v + v'u - 2(uv) &= -2x \\ v(u' - 2u) + v'u &= -2x \end{aligned}$$

We solve separately:

$$\begin{aligned} u' - 2u &= 0 \\ v'u &= -2x \end{aligned}$$

From the first equation:

$$\begin{aligned} \frac{du}{dx} - 2u &= 0 \\ \frac{du}{u} &= 2dx \\ \ln(u) &= 2x \\ u &= e^{2x} \end{aligned}$$

Inserting into the second equation:

$$\begin{aligned} v'e^{2x} &= -2x \\ dv &= -2xe^{-2x} dx \end{aligned}$$

We solve the integral on both sides:

$$\int -2xe^{-2x} dx$$

Using integration by parts: $\int fg' = fg - \int f'g$,

$$f = -2x, \quad g' = e^{-2x}$$

$$f' = -2, \quad g = \frac{e^{-2x}}{-2}.$$

$$\int -2xe^{-2x} dx = -2x \left(\frac{e^{-2x}}{-2} \right) - \int -2 \left(\frac{e^{-2x}}{-2} \right) = xe^{-2x} + \frac{e^{-2x}}{2} + C = e^{-2x} \left(x + \frac{1}{2} \right) + C$$

$$v = e^{-2x} \left(x + \frac{1}{2} \right) + C$$

Thus, recall that $z = uv = e^{2x} \left(e^{-2x} \left(x + \frac{1}{2} \right) + C \right) = x + \frac{1}{2} + Ce^{2x}$. Since $z = y^{-2}$, we have:

$$y^{-2} = x + \frac{1}{2} + Ce^{2x}$$

$$y = \left(x + \frac{1}{2} + Ce^{2x} \right)^{-1/2}$$

3. $dy/dx = \frac{e^x - y}{x}$

Rearranging:

$$x \, dy + (y - e^x) \, dx = 0$$

It holds that $M'_x = 1 = N'_y = 1$, where $M = x$, $N = e^x - y$. We integrate:

$$\int x \, dy = xy$$
$$\int (y - e^x) \, dx = yx - e^x$$

Thus:

$$yx - e^x = C$$

$$y(x) = \frac{e^x + C}{x}$$